If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3y^2-18y-21=0
a = 3; b = -18; c = -21;
Δ = b2-4ac
Δ = -182-4·3·(-21)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$y_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-18)-24}{2*3}=\frac{-6}{6} =-1 $$y_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-18)+24}{2*3}=\frac{42}{6} =7 $
| 2x+3-(30-2x)=x+23 | | 7x+12=x+24* | | 3y^2-18y-2=0 | | 150m-125m+33,425=35,350-150m | | 50=4y^2+10y | | ¼(x-4)+x=14 | | 47-2x=45x=-1 | | 3m+11m+6=0 | | b-(-4)=8 | | (2x+15)+(3x-10)=180° | | -2=-5x+5 | | 2z+1=0z=12 | | 25+3(4-m)=-12 | | -6b+27=3b=-4 | | x+100=193 | | 11x+4=163 | | -6(10+a)=-18 | | x+100=85 | | -(q-78)=3 | | 15600=X-0.07x | | Qs=+5(20) | | 2x^2-13=85 | | 7y+4=32y=4 | | 7x-5=245 | | 8d-7=23 | | q^2-40q+200=0 | | x+3x5=40 | | x+2x2=15 | | 3x^2-13=95 | | 100-4x=0x=-25 | | -20=28-6u | | x2=7x+8 |